References
Abdellaoui, A., Hottenga, J.-J., Knijff, P. de, Nivard, M.G., Xiao, X., Scheet, P., et al. (2013). Population structure, migration, and diversifying selection in the Netherlands. European Journal of Human Genetics, 21, 1277–1285.
Aschard, H., Vilhjálmsson, B.J., Joshi, A.D., Price, A.L., & Kraft, P. (2015). Adjusting for heritable covariates can bias effect estimates in genome-wide association studies. The American Journal of Human Genetics, 96, 329–339.
Bulik-Sullivan, B., Finucane, H.K., Anttila, V., Gusev, A., Day, F.R., Loh, P.-R., et al. (2015). An atlas of genetic correlations across human diseases and traits. Nature Genetics, 47, 1236–1241.
Bulik-Sullivan, B.K., Loh, P.-R., Finucane, H.K., Ripke, S., Yang, J., Psychiatric Genomics Consortium, S.W.G. of the, et al. (2015). LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nature Genetics, 47, 291–295.
Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L.T., Sharp, K., et al. (2018). The UK Biobank resource with deep phenotyping and genomic data. Nature, 562, 203–209.
Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M., & Lee, J.J. (2015). Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience, 4, s13742–015.
Chen, W., Wu, Y., Zheng, Z., Qi, T., Visscher, P.M., Zhu, Z., & Yang, J. (2021). Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors. Nature Communications, 12, 1–10.
Choi, S.W., & O’Reilly, P.F. (2019). PRSice-2: Polygenic risk score software for biobank-scale data. Gigascience, 8, giz082.
Daetwyler, H.D., Villanueva, B., & Woolliams, J.A. (2008). Accuracy of predicting the genetic risk of disease using a genome-wide approach. PloS One, 3, e3395.
Darlay, R., Shah, R.L., Dodds, R.M., Nair, A.T., Pearson, E.R., Witham, M.D., et al. (2025). Exploring similarities and differences between methods that exploit patterns of local genetic correlation to identify shared causal loci through application to genome-wide association studies of multiple long term conditions. Genetic Epidemiology, 49, e70012.
Das, S., Forer, L., Schönherr, S., Sidore, C., Locke, A.E., Kwong, A., et al. (2016). Next-generation genotype imputation service and methods. Nature Genetics, 48, 1284–1287.
Day, F.R., Loh, P.-R., Scott, R.A., Ong, K.K., & Perry, J.R. (2016). A robust example of collider bias in a genetic association study. The American Journal of Human Genetics, 98, 392–393.
Ding, Y., Hou, K., Xu, Z., Pimplaskar, A., Petter, E., Boulier, K., et al. (2023). Polygenic scoring accuracy varies across the genetic ancestry continuum. Nature, 618, 774–781.
Finucane, H.K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Reshef, Y., Loh, P.-R., et al. (2015). Partitioning heritability by functional annotation using genome-wide association summary statistics. Nature Genetics, 47, 1228–1235.
Fuat, A., Adlen, E., Monane, M., Coll, R., Groves, S., Little, E., et al. (2024). A polygenic risk score added to a QRISK 2 cardiovascular disease risk calculator demonstrated robust clinical acceptance and clinical utility in the primary care setting. European Journal of Preventive Cardiology, 31, 716–722.
Gamazon, E.R., Wheeler, H.E., Shah, K.P., Mozaffari, S.V., Aquino-Michaels, K., Carroll, R.J., et al. (2015). A gene-based association method for mapping traits using reference transcriptome data. Nature Genetics, 47, 1091–1098.
Gazal, S., Loh, P.-R., Finucane, H.K., Ganna, A., Schoech, A., Sunyaev, S., & Price, A.L. (2018). Functional architecture of low-frequency variants highlights strength of negative selection across coding and non-coding annotations. Nature Genetics, 50, 1600–1607.
Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C.A., & Smoller, J.W. (2019). Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nature Communications, 10, 1776.
Grinde, K.E., Browning, B.L., Reiner, A.P., Thornton, T.A., & Browning, S.R. (2024). Adjusting for principal components can induce collider bias in genome-wide association studies. PLoS Genetics, 20, e1011242.
Grotzinger, A.D., Fuente, J. de la, Privé, F., Nivard, M.G., & Tucker-Drob, E.M. (2023). Pervasive downward bias in estimates of liability-scale heritability in genome-wide association study meta-analysis: A simple solution. Biological Psychiatry, 93, 29–36.
Grotzinger, A.D., Rhemtulla, M., Vlaming, R. de, Ritchie, S.J., Mallard, T.T., Hill, W.D., et al. (2019). Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. Nature Human Behaviour, 3, 513–525.
Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B.W., et al. (2016). Integrative approaches for large-scale transcriptome-wide association studies. Nature Genetics, 48, 245–252.
Henches, L., Kim, J., Yang, Z., Rubinacci, S., Pires, G., Albiñana, C., et al. (2025). Polygenic risk score prediction accuracy convergence. Human Genetics and Genomics Advances, 6. Retrieved from https://doi.org/10.1016/j.xhgg.2025.100457
Hou, K., Ding, Y., Xu, Z., Wu, Y., Bhattacharya, A., Mester, R., et al. (2023). Causal effects on complex traits are similar for common variants across segments of different continental ancestries within admixed individuals. Nature Genetics, 55, 549–558.
Hu, S., Ferreira, L.A., Shi, S., Hellenthal, G., Marchini, J., Lawson, D.J., & Myers, S.R. (2025). Fine-scale population structure and widespread conservation of genetic effect sizes between human groups across traits. Nature Genetics, 1–11.
Julienne, H., Laville, V., McCaw, Z.R., He, Z., Guillemot, V., Lasry, C., et al. (2021). Multitrait GWAS to connect disease variants and biological mechanisms. PLoS Genetics, 17, e1009713.
Kanai, M., Elzur, R., Zhou, W., Wu, K.-H.H., Rasheed, H., Tsuo, K., et al. (2022). Meta-analysis fine-mapping is often miscalibrated at single-variant resolution. Cell Genomics, 2, 100210.
Kelemen, M., Xu, Y., Jiang, T., Zhao, J.H., Anderson, C.A., Wallace, C., et al. (2025). Performance of deep-learning-based approaches to improve polygenic scores. Nature Communications, 16, 1–9.
Kulm, S., Marderstein, A., Mezey, J., & Elemento, O. (2020). A systematic framework for assessing the clinical impact of polygenic risk scores. medRxiv, 2020–2004.
Levey, D.F., Stein, M.B., Wendt, F.R., Pathak, G.A., Zhou, H., Aslan, M., et al. (2021). Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in> 1.2 million individuals highlight new therapeutic directions. Nature Neuroscience, 24, 954–963.
Li, A., Liu, S., Bakshi, A., Jiang, L., Chen, W., Zheng, Z., et al. (2023). mBAT-combo: A more powerful test to detect gene-trait associations from GWAS data. The American Journal of Human Genetics, 110, 30–43.
Lloyd-Jones, L.R., Zeng, J., Sidorenko, J., Yengo, L., Moser, G., Kemper, K.E., et al. (2019). Improved polygenic prediction by Bayesian multiple regression on summary statistics. Nature Communications, 10, 5086.
Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A.P., & Price, A.L. (2018). Mixed-model association for biobank-scale datasets. Nature Genetics, 50, 906–908.
Mägi, R., Horikoshi, M., Sofer, T., Mahajan, A., Kitajima, H., Franceschini, N., et al. (2017). Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Human Molecular Genetics, 26, 3639–3650.
Mak, T.S.H., Porsch, R.M., Choi, S.W., Zhou, X., & Sham, P.C. (2017). Polygenic scores via penalized regression on summary statistics. Genetic Epidemiology, 41, 469–480.
Manichaikul, A., Mychaleckyj, J.C., Rich, S.S., Daly, K., Sale, M., & Chen, W.-M. (2010). Robust relationship inference in genome-wide association studies. Bioinformatics, 26, 2867–2873.
Marchini, J., & Howie, B. (2010). Genotype imputation for genome-wide association studies. Nature Reviews Genetics, 11, 499–511.
Mbatchou, J., Barnard, L., Backman, J., Marcketta, A., Kosmicki, J.A., Ziyatdinov, A., et al. (2021). Computationally efficient whole-genome regression for quantitative and binary traits. Nature Genetics, 53, 1097–1103.
Murphy, A.E., Schilder, B.M., & Skene, N.G. (2021). MungeSumstats: A Bioconductor package for the standardization and quality control of many GWAS summary statistics. Bioinformatics, 37, 4593–4596.
Okbay, A., Wu, Y., Wang, N., Jayashankar, H., Bennett, M., Nehzati, S.M., et al. (2022). Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals. Nature Genetics, 54, 437–449.
Pain, O., Glanville, K.P., Hagenaars, S.P., Selzam, S., Fürtjes, A.E., Gaspar, H.A., et al. (2021). Evaluation of polygenic prediction methodology within a reference-standardized framework. PLoS Genetics, 17, e1009021.
Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A., & Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 38, 904–909.
Price, A.L., Weale, M.E., Patterson, N., Myers, S.R., Need, A.C., Shianna, K.V., et al. (2008). Long-range LD can confound genome scans in admixed populations. The American Journal of Human Genetics, 83, 132–135.
Pritchard, J.K., & Przeworski, M. (2001). Linkage disequilibrium in humans: Models and data. The American Journal of Human Genetics, 69, 1–14.
Privé, F. (2021). Optimal linkage disequilibrium splitting. Bioinformatics, 38, 255–256.
Privé, F. (2022). Using the UK Biobank as a global reference of worldwide populations: application to measuring ancestry diversity from GWAS summary statistics. Bioinformatics, 38, 3477–3480.
Privé, F., Albiñana, C., Arbel, J., Pasaniuc, B., & Vilhjálmsson, B.J. (2023). Inferring disease architecture and predictive ability with LDpred2-auto. The American Journal of Human Genetics, 110, 2042–2055.
Privé, F., Arbel, J., Aschard, H., & Vilhjálmsson, B.J. (2022). Identifying and correcting for misspecifications in GWAS summary statistics and polygenic scores. Human Genetics and Genomics Advances, 3, 100136.
Privé, F., Arbel, J., & Vilhjálmsson, B.J. (2020). LDpred2: better, faster, stronger. Bioinformatics, 36, 5424–5431.
Privé, F., Aschard, H., & Blum, M.G. (2019). Efficient implementation of penalized regression for genetic risk prediction. Genetics, 212, 65–74.
Privé, F., Aschard, H., Carmi, S., Folkersen, L., Hoggart, C., O’Reilly, P.F., & Vilhjálmsson, B.J. (2022). Portability of 245 polygenic scores when derived from the UK Biobank and applied to 9 ancestry groups from the same cohort. The American Journal of Human Genetics, 109, 12–23.
Privé, F., Aschard, H., Ziyatdinov, A., & Blum, M.G.B. (2018). Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr. Bioinformatics, 34, 2781–2787.
Privé, F., Luu, K., Blum, M.G., McGrath, J.J., & Vilhjálmsson, B.J. (2020). Efficient toolkit implementing best practices for principal component analysis of population genetic data. Bioinformatics, 36, 4449–4457.
Privé, F., Luu, K., Vilhjálmsson, B.J., & Blum, M.G. (2020). Performing highly efficient genome scans for local adaptation with R package pcadapt version 4. Molecular Biology and Evolution, 37, 2153–2154.
Privé, F., Vilhjálmsson, B.J., Aschard, H., & Blum, M.G.B. (2019). Making the most of clumping and thresholding for polygenic scores. The American Journal of Human Genetics, 105, 1213–1221.
Reed, E., Nunez, S., Kulp, D., Qian, J., Reilly, M.P., & Foulkes, A.S. (2015). A guide to genome-wide association analysis and post-analytic interrogation. Statistics in Medicine, 34, 3769–3792.
Ruth, K.S., Day, F.R., Tyrrell, J., Thompson, D.J., Wood, A.R., Mahajan, A., et al. (2020). Using human genetics to understand the disease impacts of testosterone in men and women. Nature Medicine, 26, 252–258.
Speed, D., & Balding, D.J. (2019). SumHer better estimates the SNP heritability of complex traits from summary statistics. Nature Genetics, 51, 277–284.
Suzuki, K., Hatzikotoulas, K., Southam, L., Taylor, H.J., Yin, X., Lorenz, K.M., et al. (2023). Multi-ancestry genome-wide study in > 2.5 million individuals reveals heterogeneity in mechanistic pathways of type 2 diabetes and complications. medRxiv. Retrieved from https://doi.org/10.1101/2023.03.31.23287839
Turley, P., Walters, R.K., Maghzian, O., Okbay, A., Lee, J.J., Fontana, M.A., et al. (2018). Multi-trait analysis of genome-wide association summary statistics using MTAG. Nature Genetics, 50, 229–237.
Wallace, C. (2021). A more accurate method for colocalisation analysis allowing for multiple causal variants. PLoS Genetics, 17, e1009440.
Wang, G., Sarkar, A., Carbonetto, P., & Stephens, M. (2020). A simple new approach to variable selection in regression, with application to genetic fine mapping. Journal of the Royal Statistical Society Series B: Statistical Methodology, 82, 1273–1300.
Wang, X., Walker, A., Revez, J.A., Ni, G., Adams, M.J., McIntosh, A.M., et al. (2023). Polygenic risk prediction: Why and when out-of-sample prediction R2 can exceed SNP-based heritability. The American Journal of Human Genetics, 110, 1207–1215.
Wang, Y., Guo, J., Ni, G., Yang, J., Visscher, P.M., & Yengo, L. (2020). Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations. Nature Communications, 11, 3865.
Willer, C.J., Li, Y., & Abecasis, G.R. (2010). METAL: Fast and efficient meta-analysis of genomewide association scans. Bioinformatics, 26, 2190–2191.
Yang, J., Ferreira, T., Morris, A.P., Medland, S.E., ANthropometric Traits (GIANT) Consortium, G.I. of, Consortium, D.G.R.A.M. (DIAGRAM), et al. (2012). Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nature Genetics, 44, 369–375.
Yang, J., Weedon, M.N., Purcell, S., Lettre, G., Estrada, K., Willer, C.J., et al. (2011). Genomic inflation factors under polygenic inheritance. European Journal of Human Genetics, 19, 807–812.
Yengo, L., Vedantam, S., Marouli, E., Sidorenko, J., Bartell, E., Sakaue, S., et al. (2022). A saturated map of common genetic variants associated with human height. Nature, 610, 704–712.
Zabad, S., Haryan, C.A., Gravel, S., Misra, S., & Li, Y. (2025). Towards whole-genome inference of polygenic scores with fast and memory-efficient algorithms. The American Journal of Human Genetics. Retrieved from https://doi.org/10.1016/j.ajhg.2025.05.002
Zhang, C., Zhang, Y., Zhang, Y., & Zhao, H. (2023). Benchmarking of local genetic correlation estimation methods using summary statistics from genome-wide association studies. Briefings in Bioinformatics, 24, bbad407.
Zheng, Z., Liu, S., Sidorenko, J., Wang, Y., Lin, T., Yengo, L., et al. (2024). Leveraging functional genomic annotations and genome coverage to improve polygenic prediction of complex traits within and between ancestries. Nature Genetics, 56, 767–777.
Zhou, W., Kanai, M., Wu, K.-H.H., Rasheed, H., Tsuo, K., Hirbo, J.B., et al. (2022). Global Biobank Meta-analysis Initiative: Powering genetic discovery across human disease. Cell Genomics, 2, 100192.
Zhu, Z., Zhang, F., Hu, H., Bakshi, A., Robinson, M.R., Powell, J.E., et al. (2016). Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nature Genetics, 48, 481–487.
Zou, Y., Carbonetto, P., Wang, G., & Stephens, M. (2022). Fine-mapping from summary data with the "Sum of Single Effects" model. PLoS Genetics, 18, e1010299.