library(bigsnpr)
## Loading required package: bigstatsr
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.2.3
Let us use a subsetted version of the 1000 Genomes project data we
provide. Some quality control has already been done; otherwise, you can
use snp_plinkQC()
.
bedfile <- download_1000G("tmp-data")
## Creating directory "tmp-data" which didn't exist..
We then compute PCA without using the related individuals. Function
bed_autoSVD()
should take care of Linkage Disequilibrium
(LD).
(obj.bed <- bed(bedfile))
## A 'bed' object with 2490 samples and 1664852 variants.
ind.rel <- match(c(rel$IID1, rel$IID2), obj.bed$fam$sample.ID) # /!\ use $ID1 instead with old PLINK
ind.norel <- rows_along(obj.bed)[-ind.rel]
obj.svd <- bed_autoSVD(obj.bed, ind.row = ind.norel, k = 20,
ncores = nb_cores())
## Discarding 118686 variants with MAC < 10 or MAF < 0.02.
##
## Phase of clumping (on MAC) at r^2 > 0.2.. keep 322962 variants.
##
## Iteration 1:
## Computing SVD..
## 581 outlier variants detected..
## 5 long-range LD regions detected..
##
## Iteration 2:
## Computing SVD..
## 5 outlier variants detected..
## 0 long-range LD region detected..
##
## Iteration 3:
## Computing SVD..
## 0 outlier variant detected..
##
## Converged!
Then, we look at if there are individual outliers.
prob <- bigutilsr::prob_dist(obj.svd$u, ncores = nb_cores())
S <- prob$dist.self / sqrt(prob$dist.nn)
ggplot() +
geom_histogram(aes(S), color = "#000000", fill = "#000000", alpha = 0.5) +
scale_x_continuous(breaks = 0:5 / 5, limits = c(0, NA)) +
scale_y_sqrt(breaks = c(10, 100, 500)) +
theme_bigstatsr() +
labs(x = "Statistic of outlierness", y = "Frequency (sqrt-scale)")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 1 row containing missing values or values outside the scale range
## (`geom_bar()`).
plot_grid(plotlist = lapply(7:10, function(k) {
plot(obj.svd, type = "scores", scores = 2 * k - 1:0, coeff = 0.6) +
aes(color = S) +
scale_colour_viridis_c(direction = -1)
}), scale = 0.95)
plot_grid(plotlist = lapply(7:10, function(k) {
plot(obj.svd, type = "scores", scores = 2 * k - 1:0, coeff = 0.6) +
aes(color = S > 0.6) + # threshold based on histogram
scale_colour_viridis_d(direction = -1)
}), scale = 0.95)
We recompute PCA without outliers, starting with the previous set of variants kept (we can therefore skip the initial clumping step).
ind.row <- ind.norel[S < 0.6]
ind.col <- attr(obj.svd, "subset")
obj.svd2 <- bed_autoSVD(obj.bed, ind.row = ind.row,
ind.col = ind.col, thr.r2 = NA,
k = 20, ncores = nb_cores())
## Discarding 61 variants with MAC < 10 or MAF < 0.02.
##
## Skipping clumping.
##
## Iteration 1:
## Computing SVD..
## 0 outlier variant detected..
##
## Converged!
plot(obj.svd2)
plot(obj.svd2, type = "loadings", loadings = 1:20, coeff = 0.4)
plot(obj.svd2, type = "scores", scores = 1:20, coeff = 0.4)
PCs <- matrix(NA, nrow(obj.bed), ncol(obj.svd2$u))
PCs[ind.row, ] <- predict(obj.svd2)
proj <- bed_projectSelfPCA(obj.svd2, obj.bed,
ind.row = rows_along(obj.bed)[-ind.row],
ncores = 1) # useless -> too few individuals
PCs[-ind.row, ] <- proj$OADP_proj
plot(PCs[ind.row, 7:8], pch = 20, xlab = "PC7", ylab = "PC8")
points(PCs[-ind.row, 7:8], pch = 20, col = "blue")